Extensions 1→N→G→Q→1 with N=C22×S3 and Q=C3⋊S3

Direct product G=N×Q with N=C22×S3 and Q=C3⋊S3
dρLabelID
C22×S3×C3⋊S372C2^2xS3xC3:S3432,768

Semidirect products G=N:Q with N=C22×S3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C22×S3)⋊(C3⋊S3) = S3×C3⋊S4φ: C3⋊S3/C3S3 ⊆ Out C22×S32412+(C2^2xS3):(C3:S3)432,747
(C22×S3)⋊2(C3⋊S3) = C2×C336D4φ: C3⋊S3/C32C2 ⊆ Out C22×S3144(C2^2xS3):2(C3:S3)432,680
(C22×S3)⋊3(C3⋊S3) = C2×C337D4φ: C3⋊S3/C32C2 ⊆ Out C22×S372(C2^2xS3):3(C3:S3)432,681
(C22×S3)⋊4(C3⋊S3) = S3×C327D4φ: C3⋊S3/C32C2 ⊆ Out C22×S372(C2^2xS3):4(C3:S3)432,684

Non-split extensions G=N.Q with N=C22×S3 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C22×S3).(C3⋊S3) = C62.77D6φ: C3⋊S3/C32C2 ⊆ Out C22×S3144(C2^2xS3).(C3:S3)432,449
(C22×S3).2(C3⋊S3) = C2×S3×C3⋊Dic3φ: trivial image144(C2^2xS3).2(C3:S3)432,674

׿
×
𝔽